Vector kinematics AI HL
I. Vector Kinematics
(a) Constant velocity
If an object moves with constant velocity ( vec{v} ), then its position at time (t) is
( vec{r} = vec{r}_0 + vec{v}t )
- (vec{r}_0) = initial position vector
- (vec{v}) = velocity vector
- (t) = time
Example: A car starts at (begin{bmatrix}2 \ 1end{bmatrix}) km with velocity (begin{bmatrix}60 \ 0end{bmatrix}) km/h.
After 2 h:
(
vec{r} = begin{bmatrix}2 \ 1end{bmatrix} + 2begin{bmatrix}60 \ 0end{bmatrix}
= begin{bmatrix}122 \ 1end{bmatrix}
)
So the car is 122 km east, 1 km north.
(b) Colliding objects
Two objects collide if their position vectors are equal at the same time.
Example:
(
vec{r}_A = begin{bmatrix}0 \ 0end{bmatrix} + tbegin{bmatrix}2 \ 1end{bmatrix}
= begin{bmatrix}2t \ tend{bmatrix}
)
(
vec{r}_B = begin{bmatrix}10 \ 2end{bmatrix} + tbegin{bmatrix}-1 \ 0end{bmatrix}
= begin{bmatrix}10-t \ 2end{bmatrix}
)
For collision, solve (vec{r}_A=vec{r}_B):
(2t=10-t Rightarrow t=tfrac{10}{3}).
At this time, (y_A=tfrac{10}{3}), (y_B=2). They are not equal → no collision.
II. Variable Velocity: Uniform Acceleration
If acceleration (vec{a}) is constant:
- Velocity: (vec{v}=vec{u}+vec{a}t)
- Position: (vec{r}=vec{r}_0+vec{u}t+tfrac{1}{2}vec{a}t^2)
Example: A particle starts at (vec{r}_0=begin{bmatrix}0\0end{bmatrix}) with initial velocity (vec{u}=begin{bmatrix}4\0end{bmatrix}) m/s and acceleration (vec{a}=begin{bmatrix}0\-9.8end{bmatrix}) m/s².
- After 2 s, velocity:
(vec{v}=begin{bmatrix}4\0end{bmatrix}+2begin{bmatrix}0\-9.8end{bmatrix}
= begin{bmatrix}4\-19.6end{bmatrix}) - Position:
(vec{r}=begin{bmatrix}0\0end{bmatrix}+2begin{bmatrix}4\0end{bmatrix}
+tfrac{1}{2}begin{bmatrix}0\-9.8end{bmatrix}(2^2)
= begin{bmatrix}8\-19.6end{bmatrix})
So the object is 8 m across, 19.6 m down.
III. Variable Velocity in Two Dimensions
In 2D, velocity has independent components:
(
vec{v}=begin{bmatrix}v_x \ v_yend{bmatrix}, quad
vec{a}=begin{bmatrix}a_x \ a_yend{bmatrix}
)
Equations of motion:
- (v_x=u_x+a_xt,quad v_y=u_y+a_yt)
- (x=x_0+u_xt+tfrac{1}{2}a_xt^2)
- (y=y_0+u_yt+tfrac{1}{2}a_yt^2)
Projectile motion (special case)
- Horizontal: (a_x=0) → constant horizontal velocity
- Vertical: (a_y=-g) due to gravity
Example: A ball is thrown with initial velocity
(vec{u}=begin{bmatrix}10\15end{bmatrix}) m/s from the origin.
- Horizontal: (x=10t)
- Vertical: (y=15t-4.9t^2)
At (t=2) s:
(x=20,; y=30-19.6=10.4).
So the ball is at (20 m, 10.4 m).
Practice Problems (click to expand)
-
A particle starts at (vec{r}_0=begin{bmatrix}5\-2end{bmatrix}) with velocity
(vec{v}=begin{bmatrix}3\4end{bmatrix}) m/s.
Find its position after 6 seconds. -
Two cars move along straight roads:
(vec{r}_A=begin{bmatrix}0\0end{bmatrix}+tbegin{bmatrix}4\1end{bmatrix}),
(vec{r}_B=begin{bmatrix}20\5end{bmatrix}+tbegin{bmatrix}-2\0end{bmatrix}).
Do they collide? If so, at what time and where? -
A ball is thrown upward from the origin with initial velocity
(vec{u}=begin{bmatrix}0\12end{bmatrix}) m/s under gravity
(vec{a}=begin{bmatrix}0\-9.8end{bmatrix}).
Find (i) the maximum height, and (ii) the time when the ball hits the ground. -
A projectile is fired with velocity
(vec{u}=begin{bmatrix}15\20end{bmatrix}) m/s.
Write equations for its horizontal and vertical positions and find its coordinates after 3 seconds. -
A runner moves with initial velocity
(vec{u}=begin{bmatrix}2\0end{bmatrix}) m/s and acceleration
(vec{a}=begin{bmatrix}1\0end{bmatrix}) m/s².
Find the velocity and position after 5 seconds.
Show Solutions
-
Position after 6 s:
(vec r=begin{bmatrix}5\-2end{bmatrix}+6begin{bmatrix}3\4end{bmatrix}
=begin{bmatrix}23\22end{bmatrix}). -
For collision: from y–components (t=5).
Then (x_A=20), (x_B=10).
Since unequal → no collision. -
Max height when (v_y=0):
(t=12/9.8approx1.224text{ s}).
Height: (y=7.35text{ m}).
Hits ground at (t=2.449text{ s}). -
Equations: (x=15t,; y=20t-4.9t^2).
At (t=3):
((x,y)=(45,15.9)). -
Velocity:
(vec v=begin{bmatrix}2\0end{bmatrix}+5begin{bmatrix}1\0end{bmatrix}
=begin{bmatrix}7\0end{bmatrix}).
Position:
(vec r=begin{bmatrix}0\0end{bmatrix}+5begin{bmatrix}2\0end{bmatrix}
+tfrac12begin{bmatrix}1\0end{bmatrix}(25)
=begin{bmatrix}22.5\0end{bmatrix}).
